Constraining CP violation in neutral meson mixing with theory input

Sascha Turczyk

Work in collaboration with M. Freytsis and Z. Ligeti [1203.3545 hep-ph]
Lawrence Berkeley National Laboratory

Vienna Theory Seminar
Thursday, June 28th, 2012
1. **Introduction**
 - Motivation
 - Description of Meson Oscillation
 - Theoretical Predictions of Oscillation Parameters

2. **Theoretical Constraints on the Mixing Parameters**
 - Unitarity Constraint
 - Deriving a Relation using Theoretical Input
 - Application to Recent Data

3. **Summary**
 - Discussion
 - Summary
Motivation

- The Standard Model has passed all precision tests
 1. CERN: Z discovery, test of the gauge structure
 2. Flavour factories: Test of the flavour sector
 3. Tevatron: Discoveries, top, $B_s - \bar{B}_s$ oscillation, ...
 4. LHC: Up to now no significant new discoveries
- Only a few tensions $\sim 2 - 3\sigma$
- Most hints for New Physics in flavour physics sector

Promising Channels: Flavour changing neutral currents (FCNC)
- Forbidden at tree level \Rightarrow NP can enter at the same order
- $\Delta F = 1$ processes: Rare decays
- $\Delta F = 2$ processes: Meson oscillation / mixing
- Focus here on $M - \bar{M}$ oscillation (especially $B_{d/s} - \bar{B}_{d/s}$)
Motivation

- The Standard Model has passed all precision tests
 1. CERN: Z discovery, test of the gauge structure
 2. Flavour factories: Test of the flavour sector
 3. Tevatron: Discoveries, top, $B_s - \bar{B}_s$ oscillation, ...
 4. LHC: Up to now no significant new discoveries
- Only a few tensions $\sim 2 - 3\sigma$
- Most hints for New Physics in flavour physics sector

Promising Channels: Flavour changing neutral currents (FCNC)

- Forbidden at tree level \Rightarrow NP can enter at the same order
- $\Delta F = 1$ processes: Rare decays
- $\Delta F = 2$ processes: Meson oscillation / mixing
- Focus here on $M - \bar{M}$ oscillation (especially $B_{d/s} - \bar{B}_{d/s}$)
Mixing and CP Violation: Origin and Consequences

CKM Matrix
- Diagonalize up- and down-type quark mass matrices simultaneously
 \[V_{\text{ckm}} = V^{(u)} W^{(d)\dagger} \]
- 3 generations \(\Rightarrow \) \(V_{\text{ckm}} \) has 3 angles and 1 complex phase

Consequences
- CP violation if all masses are non-degenerate
- Transitions between different generations
 \(\Rightarrow \) Flavor changing neutral currents at the loop-level
CKM Matrix

- Diagonalize up- and down-type quark mass matrices simultaneously
- Missmatch in charged current described by CKM matrix
 \[V_{\text{ckm}} = V^{(u)} W^{(d)\dagger} \]
- 3 generations \(\Rightarrow \) \(V_{\text{ckm}} \) has 3 angles and 1 complex phase

Consequences

- CP violation if all masses are non-degenerate
- Transitions between different generations
- Flavor changing neutral currents at the loop-level
CKM Matrix

- Diagonalize up- and down-type quark mass matrices simultaneously

 \[V_{\text{ckm}} = V^{(u)} W^{(d)\dagger} \]

- 3 generations \(\Rightarrow \) \(V_{\text{ckm}} \) has 3 angles and 1 complex phase

Consequences

- CP violation if all masses are non-degenerate
- Transitions between different generations

 \[V_{\text{CKM}}^\dagger V_{\text{CKM}} = \begin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Introduction
Theoretical Constraints on the Mixing Parameters
Motivation
Description of Meson Oscillation
Theoretical Predictions of Oscillation Parameters

The CKM Matrix

[CKMfitter: http://ckmfitter.in2p3.fr/]

Sascha Turczyk
Constraining CP violation in neutral meson mixing with theory input
CP Violating in Mixing

General Comments

- Occurs in $P_0 \leftrightarrow \bar{P}_0$ oscillations
- Flavor specific final states
 \[P_0 \to f \leftrightarrow \bar{P}_0 \]
- Necessary condition: $\left|\frac{q}{p}\right| \neq 1$
- Rates for B and \bar{B} differ

Example of Process

Semi-leptonic asymmetry: $P_0 \to X\ell^+\bar{\nu}_\ell$ and $\bar{P}_0 \to X\ell^-\nu_\ell$

\[A_{sl} \equiv \frac{\Gamma(P_0 \to X\ell^-) - \Gamma(\bar{P}_0 \to X\ell^+)}{\Gamma(P_0 \to X\ell^-) + \Gamma(\bar{P}_0 \to X\ell^+)} = \frac{1 - |q/p|^4}{1 + |q/p|^4} \]
Description of Neutral Meson Mixing

- Two state system with interplay of oscillation and decay
- Mass matrix M and decay width matrix Γ are hermitian

\[
i \frac{\partial}{\partial t} \left(|P_0\rangle - |\bar{P}_0\rangle \right) = \left[\begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{pmatrix} \right] \left(|P_0\rangle - |\bar{P}_0\rangle \right)
\]

Diagonalization

- Solution for mass eigenstates

\[
|P_{H,L}\rangle = \frac{p |P^0\rangle \mp q |\bar{P}_0\rangle}{\sqrt{|p|^2 + |q|^2}}, \quad \frac{q^2}{p^2} = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}
\]

- Mass eigenstates do not need to coincide with CP eigenstates

\[
\delta \equiv \langle P_H | P_L \rangle = \frac{|p|^2 - |q|^2}{|p|^2 + |q|^2} = 1 - \frac{|q/p|^2}{1 + |q/p|^2} = \frac{1 - \sqrt{1 - A_{sl}^2}}{A_{sl}} \approx \frac{1}{2} A_{sl}
\]
Description of Neutral Meson Mixing

- Two state system with interplay of oscillation and decay
- Mass matrix M and decay width matrix Γ are hermitian

$$i \frac{\partial}{\partial t} \left(|P_0\rangle \right) = \left[\left(\begin{array}{cc} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{array} \right) - i \left(\begin{array}{cc} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{array} \right) \right] \left(|P_0\rangle \right)$$

Diagonalization

- Solution for mass eigenstates

$$|P_{H,L}\rangle = \frac{p|P^0\rangle \mp q|\bar{P}_0\rangle}{\sqrt{|p|^2 + |q|^2}}, \quad \frac{q^2}{p^2} = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}$$

- Mass eigenstates do not need to coincide with CP eigenstates

$$\delta \equiv \langle P_H|P_L \rangle = \frac{|p|^2 - |q|^2}{|p|^2 + |q|^2} = \frac{1 - |q/p|^2}{1 + |q/p|^2} = \frac{1 - \sqrt{1 - A_{sl}^2}}{A_{sl}} \approx \frac{1}{2} A_{sl}$$
Test of the Standard Model

Need to predict three parameters to compare with SM

\[
\Delta M = 2 \text{Re} \sqrt{(M_{12} - i/2\Gamma_{12})(M^*_{12} - i/2\Gamma^*_{12})} \approx 2 |M_{12}|
\]

\[
\Delta \Gamma = -4 \text{Im} \sqrt{(M_{12} - i/2\Gamma_{12})(M^*_{12} - i/2\Gamma^*_{12})} \approx 2 |\Gamma_{12}| \cos[\text{Arg}(-\Gamma_{12}/M_{12})]
\]

\[
\delta = (1 - |q/p|^2)/(1 + |q/p|^2) \approx 1/2 \text{Im} \Gamma_{12}/M_{12}
\]

Mixing Parameter Input

- \(M_{12}\): Dominated by dispersive part of \(\Delta B = 2\) operator
- \(\Gamma_{12}\): Dominated by absorptive part of \(\Delta B = 1\) op. double insertion
- Main theoretical uncertainties
 1. Operator product expansion in physical region
 2. Expansion in small energy release \(m_b - 2m_c < 2 \text{ GeV}\)

\[\text{[1008.1593,1203.0238]}\]
Need to predict three parameters to compare with SM

\[\Delta M = 2\text{Re}\sqrt{(M_{12} - i/2\Gamma_{12})(M_{12}^* - i/2\Gamma_{12}^*)} \approx 2|M_{12}| \]

\[\Delta \Gamma = -4\text{Im}\sqrt{(M_{12} - i/2\Gamma_{12})(M_{12}^* - i/2\Gamma_{12}^*)} \approx 2|\Gamma_{12}| \cos[\text{Arg}(-\Gamma_{12}/M_{12})] \]

\[\delta = (1 - |q/p|^2)/(1 + |q/p|^2) \approx 1/2 \text{Im} \Gamma_{12}/M_{12} \]

Mixing Parameter Input

- \(M_{12} \): Dominated by dispersive part of \(\Delta B = 2 \) operator
- \(\Gamma_{12} \): Dominated by absorptive part of \(\Delta B = 1 \) op. double insertion
- Main theoretical uncertainties
 1. Operator product expansion in physical region
 2. Expansion in small energy release \(m_b - 2m_c < 2 \text{ GeV} \)
Effective Theory at the scale of the B

\[\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \lambda_{\text{CKM}} \sum_i C_i(\mu)O_i(\mu) \]

- Current-current operators
- Electroweak/QCD Penguins
- Magnetic Penguins
- Semi-leptonic operators
- $\Delta F = 2$ operators

Allows for Systematic Calculation: Heavy Quark Expansion (HQE)

- Perturbative α_s corrections
- Non-perturbative $1/m_{b,c}$ corrections
Effective Theory at the scale of the B

$\mathcal{H}_{\text{eff}} = \frac{4 G_F}{\sqrt{2}} \lambda_{\text{CKM}} \sum_i C_i(\mu)O_i(\mu)$

- Current-current operators
- Electroweak/QCD Penguins
- Magnetic Penguins
- Semi-leptonic operators
- $\Delta F = 2$ operators

Allows for Systematic Calculation: Heavy Quark Expansion (HQE)

- Perturbative α_s corrections
- Non-perturbative $1/m_{b,c}$ corrections
The Hamilton Matrix: Computing Mixing Parameters

- Matrix to be understood in \(M_1 \equiv M \rightarrow \tilde{M} \equiv M_2 \) space
- Weak interaction sets scale: “Wigner-Weisskopf” approximation
 \[\Rightarrow \text{Expansion in powers of } G_F \triangleq \text{Number of } \mathcal{H}_{\text{weak}} \text{ Insertions} \]
- Use rest-frame of the meson
 \[\left[\mathcal{M} - \frac{i}{2} \Gamma \right]_{ij} = M_M \delta^{(0)}_{ij} + \frac{1}{2 M_M} \sum_n \frac{\langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle}{M_M^{(0)} - E_n + i \epsilon} + \ldots \]
- Sum includes phase-space of final state
- Decompose into dispersive and absorptive part “optical theorem”
 \[\frac{1}{\omega + i \epsilon} = \mathcal{P} \left(\frac{1}{\omega} \right) - i \pi \delta(\omega) \]
The Hamilton Matrix: Computing Mixing Parameters

- Matrix to be understood in $M_1 \equiv M \rightarrow \bar{M} \equiv M_2$ space
- Weak interaction sets scale: “Wigner-Weisskopf” approximation
 \Rightarrow Expansion in powers of $G_F \equiv$ Number of H_{weak} Insertions
- Use rest-frame of the meson

$$
\begin{bmatrix}
 \mathcal{M} - \frac{i}{2} \Gamma
\end{bmatrix}_{ij} = M M \delta^{(0)}_{ij} + \frac{1}{2 M M} \sum_n \frac{\langle M_i | H_{\text{weak}} | n \rangle \langle n | H_{\text{weak}} | M_j \rangle}{M^{(0)}_M - E_n + i \epsilon} + \ldots
$$

- Sum includes phase-space of final state
- Decompose into dispersive and absorptive part “optical theorem”

$$
\frac{1}{\omega + i \epsilon} = P \left(\frac{1}{\omega} \right) - i \pi \delta(\omega)
$$
The Hamilton Matrix: Computing Mixing Parameters

- Matrix to be understood in $M_1 \equiv M - \bar{M} \equiv M_2$ space
- Weak interaction sets scale: “Wigner-Weisskopf” approximation
 $$\Rightarrow$$ Expansion in powers of $G_F \equiv \text{Number of } \mathcal{H}_{\text{weak}} \text{ Insertions}$
- Use rest-frame of the meson

$$\left[\mathcal{M} - \frac{i}{2} \Gamma \right]_{ij} = M_M \delta_{ij}^{(0)} + \frac{1}{2M_M} \sum_n \frac{\langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle}{M_M^{(0)} - E_n + i\epsilon} + \ldots$$

- Sum includes phase-space of final state
- Decompose into dispersive and absorptive part “optical theorem”

$$\frac{1}{\omega + i\epsilon} = \mathcal{P} \left(\frac{1}{\omega} \right) - i\pi \delta(\omega)$$
Calculation of Γ_{12}

Absorptive Part

\[
\Gamma_{ij} = \frac{1}{2M_M} \sum_n \langle M_i | \mathcal{H}_{\text{weak}} | n \rangle \langle n | \mathcal{H}_{\text{weak}} | M_j \rangle (2\pi) \delta(M_M^{(0)} - E_n)
\]

- On-shell production of intermediate particles
- $i = j$ recovers total width
- Dominated by $\Delta B = 1$ operator
- Only u and c intermediate state quarks

Calculation

- Perturbative corrections
 1. Up to NLO in $\alpha_s(m_b)$
 2. All-order summation of $\alpha_s^n(m_c^2/m_b^2)^n \log(m_c^2/m_b^2)$
- Non-perturbative corrections up to Λ_{QCD}/m_b (5 more operators)
Calculation of Γ_{12}

Absorptive Part

$$\Gamma_{ij} = \frac{1}{2M_M} \sum_n \langle M_i | H_{\text{weak}} | n \rangle \langle n | H_{\text{weak}} | M_j \rangle (2\pi) \delta(M_M^{(0)} - E_n)$$

- On-shell production of intermediate particles
- $i = j$ recovers total width
- Dominated by $\Delta B = 1$ operator
- Only u and c intermediate state quarks

Calculation

1. Perturbative corrections
 - Up to NLO in $\alpha_s(m_b)$
 - All-order summation of $\alpha_s^n(m_c^2/m_b^2)^n \log(m_c^2/m_b^2)$
2. Non-perturbative corrections up to Λ_{QCD}/m_b (5 more operators)

[arXiv:1102.4274]
Calculation of Γ_{12}

Absorptive Part

\[
\Gamma_{ij} = \frac{1}{2M_M} \sum_n \langle M_i | H_{\text{weak}} | n \rangle \langle n | H_{\text{weak}} | M_j \rangle (2\pi) \delta (M_M^{(0)} - E_n)
\]

- On-shell production of intermediate particles
- $i = j$ recovers total width
- dominated by $\Delta B = 1$ operator
- Only u and c intermediate state quarks

Calculation

- Perturbative corrections
 1. Up to NLO in $\alpha_s(m_b)$
 2. All-order summation of $\alpha_s^n (m_c^2/m_b^2)^n \log (m_c^2/m_b^2)$
- Non-perturbative corrections up to Λ_{QCD}/m_b (5 more operators)
Calculation of M_{12}

Dispersive Part

\[
M_{ij} = \frac{1}{2M_M} \langle M_i | \mathcal{H}_{\Delta F=2} | M_j \rangle + \frac{1}{2M_M} \sum_n \mathcal{P} \frac{\langle M_i | \mathcal{H}_{\Delta F=1} | n \rangle \langle n | \mathcal{H}_{\Delta F=1} | M_j \rangle}{M_M^{(0)} - E_n}
\]

- dominated by $\Delta B = 2$ operator
- top quark dominate intermediate state

Result within SM

\[
M_{12} = \frac{G_F^2 M_B}{12\pi^2} M_W^2 (V_{tb} V_{ts}^*)^2 \hat{\eta}_B S_0 \left(\frac{m_t^2}{M_W^2} \right) f_{B_s}^2 B
\]

- Lattice determination of Bag parameter B and decay constant f_{B_s}
- Mass difference measured precisely

⇒ $|M_{12}|$ for $|M_{12}| \gg \Gamma_{12}$
Calculation of M_{12}

Dispersive Part

$$M_{ij} = \frac{1}{2M_M} \langle M_i | \mathcal{H}_{\Delta F=2} | M_j \rangle + \frac{1}{2M_M} \sum_n \mathcal{P} \frac{\langle M_i | \mathcal{H}_{\Delta F=1} | n \rangle \langle n | \mathcal{H}_{\Delta F=1} | M_j \rangle}{M_M^{(0)} - E_n}$$

- dominated by $\Delta B = 2$ operator
- top quark dominate intermediate state

Result within SM

$$M_{12} = \frac{G_F^2 M_B}{12\pi^2} M_W^2 (V_{tb} V_{ts}^*)^2 \hat{\eta}_B S_0 \left(\frac{m_t^2}{M_W^2} \right) f_{B_s}^2 B$$

- Lattice determination of Bag parameter B and decay constant f_{B_s}
- Mass difference measured precisely

\Rightarrow Fixes $|M_{12}|$ for $|M_{12}| \gg \Gamma_{12}$

Calculation of A_{SL}

In the Standard Model

- Naming scheme for $B_{s,d}$: $A_{SL}^{d,s}$
- Sum of both including production asymmetry: A_{SL}^{b}
- SM phase originates from CKM mechanism (convention dependent)

\[
A_{SL}^{d,s} \approx \text{Im} \frac{\Gamma_{12}^{d,s}}{M_{12}^{d,s}} \approx \frac{\Delta \Gamma_{d,s}}{\Delta M_{d,s}} \tan \phi_{d,s}
\]

- Highly suppressed: $|\Gamma_{12}/M_{12}| = \mathcal{O}(m_b^2/M_W^2, m_c^2/m_b^2)$

Beyond the Standard Model

- Additional phases can be introduced in M_{12} due to New Physics

 \(\Rightarrow\) Introduces sensitivity to $\text{Re}(\Gamma_{12}/M_{12})_{SM}$

 \(\Rightarrow\) Enhanced sensitivity for BSM physics in this observable
Calculation of A_{sL}

In the Standard Model

- Naming scheme for $B_{s,d}$: $A_{sL}^{d,s}$
- Sum of both including production asymmetry: A_{sL}^b
- SM phase originates from CKM mechanism (convention dependent)

$$A_{sL}^{d,s} \approx \text{Im} \frac{\Gamma_{12}^{d,s}}{M_{12}^{d,s}} \approx \frac{\Delta \Gamma_{d,s}}{\Delta M_{d,s}} \tan \phi_{d,s}$$

- Highly suppressed: $|\Gamma_{12}/M_{12}| = \mathcal{O}(m_b^2/M_W^2, m_c^2/m_b^2)$

Beyond the Standard Model

- Additional phases can be introduced in M_{12} due to New Physics
 - Introduces sensitivity to $\text{Re}(\Gamma_{12}/M_{12})_{SM}$
 - Enhanced sensitivity for BSM physics in this observable
Standard Model Predictions \cite{A.Lenz,U.Nierste: 1102.4274,hep-ph/0612167}

Predictions for B_s System

- $2|\Gamma_{12}^s| = (0.087 \pm 0.021) \text{ ps}^{-1}$
- $\Delta M_s = (17.3 \pm 2.6) \text{ ps}^{-1}$
- $\phi_s = (0.22 \pm 0.06)^\circ$
- $a_{SL}^s = (1.9 \pm 0.3) \times 10^{-5}$

Predictions for B_d System

- $2|\Gamma_{12}^d| = (2.74 \pm 0.51) \times 10^{-3} \text{ ps}^{-1}$
- $\phi_d = (-4.3 \pm 1.4)^\circ$
- $a_{SL}^d = -(4.1 \pm 0.6) \times 10^{-4}$
Standard Model Predictions

Predictions for B_s System
- $2|\Gamma_{12}^s| = (0.087 \pm 0.021) \text{ ps}^{-1}$
- $\Delta M_s = (17.3 \pm 2.6) \text{ ps}^{-1}$
- $\phi_s = (0.22 \pm 0.06)^\circ$
- $a_{SL}^s = (1.9 \pm 0.3)10^{-5}$

Predictions for B_d System
- $2|\Gamma_{12}^d| = (2.74 \pm 0.51) \times 10^{-3} \text{ ps}^{-1}$
- $\phi_d = (-4.3 \pm 1.4)^\circ$
- $a_{SL}^d = -(4.1 \pm 0.6)10^{-4}$

Current Experimental Situation

DØ Like-sign Di-muon measurement

\[A_{SL}^b = -[7.87 \pm 1.72 \text{ (stat)} \pm 0.93 \text{ (syst)}] \times 10^{-3} \]
\[= (0.594 \pm 0.022) A_{SL}^d + (0.406 \pm 0.022) A_{SL}^s \]

\[\Delta M_s = (17.719 \pm 0.043) \text{ ps}^{-1} \text{ [hep-ex/0609040,LHCb-CONF-2011-050(005)]} \]
\[\Delta M_d = (0.507 \pm 0.004) \text{ ps}^{-1} \text{ Heavy Flavor Averaging Group (HFAG)} \]
\[\Delta \Gamma_s = (0.116 \pm 0.019) \text{ ps}^{-1} \text{ LHCb} \]
\[\Delta \Gamma_s = (0.068 \pm 0.027) \text{ ps}^{-1} \text{ CDF} \]
\[\Delta \Gamma_s = (0.163^{+0.065}_{-0.064}) \text{ ps}^{-1} \text{ DØ} \]

LHCb measurement of time dependent CP asymmetry

\[\phi_s = -0.001 \pm 0.101 \text{(stat)} \pm 0.027 \text{(syst)} \text{ rad} \]

New measurement tend to agree well with SM
Current Experimental Situation

DØ Like-sign Di-muon measurement

\[A_{SL}^{b} = -[7.87 \pm 1.72 \text{ (stat)} \pm 0.93 \text{ (syst)}] \times 10^{-3} \]
\[= (0.594 \pm 0.022) A_{SL}^{d} + (0.406 \pm 0.022) A_{SL}^{s} \]

\[\Delta M_s = (17.719 \pm 0.043) \text{ ps}^{-1} \] [hep-ex/0609040,LHCb-CONF-2011-050(005)]

\[\Delta M_d = (0.507 \pm 0.004) \text{ ps}^{-1} \] Heavy Flavor Averaging Group (HFAG)

\[\Delta \Gamma_s = (0.116 \pm 0.019) \text{ ps}^{-1} \] LHCb

\[\Delta \Gamma_s = (0.068 \pm 0.027) \text{ ps}^{-1} \] CDF

\[\Delta \Gamma_s = (0.163^{+0.065}_{-0.064}) \text{ ps}^{-1} \] DØ

LHCb measurement of time dependent CP asymmetry [LHCb-CONF-2012-002]

\[\phi_s = -0.001 \pm 0.101 \text{ (stat)} \pm 0.027 \text{ (syst)} \text{ rad} \]

- New measurement tend to agree well with SM
Current Experimental Situation

DØ Like-sign Di-muon measurement

\[A^b_{SL} = -[7.87 \pm 1.72 \text{ (stat)} \pm 0.93 \text{ (syst)}] \times 10^{-3} \]
\[= (0.594 \pm 0.022) A^d_{SL} + (0.406 \pm 0.022) A^s_{SL} \]

\[\Delta M_s = (17.719 \pm 0.043) \text{ ps}^{-1} \] [hep-ex/0609040,LHCb-CONF-2011-050(005)]
\[\Delta M_d = (0.507 \pm 0.004) \text{ ps}^{-1} \] Heavy Flavor Averaging Group (HFAG)

\[\Delta \Gamma_s = (0.116 \pm 0.019) \text{ ps}^{-1} \] LHCb
\[\Delta \Gamma_s = (0.068 \pm 0.027) \text{ ps}^{-1} \] CDF
\[\Delta \Gamma_s = (0.163^{+0.065}_{-0.064}) \text{ ps}^{-1} \] DØ

LHCb measurement of time dependent CP asymmetry

\[\phi_s = -0.001 \pm 0.101 \text{ (stat)} \pm 0.027 \text{ (syst)} \text{ rad} \]

- New measurement tend to agree well with SM
How Can New Physics Enter?
- Can induce new operator structures
- Can modify Wilson coefficients

Parametrization and Effects
- For B mesons: $|\Gamma_{12}/M_{12}| \ll 1$

\[\Delta m = |2M_{12}|, \quad \Delta \Gamma = 2|\Gamma_{12}| \cos \phi_{12}, \quad A_{\text{sl}} = 2\delta = \text{Im}(\Gamma_{12}/M_{12}) \]

- In general: Changing phase and absolute value possible

\[M_{12} = M_{12}^{\text{SM}} |\Delta_s| e^{i\phi_s^\Delta} \]

1. Only relative phase relevant
2. M_{12}: Heavy intermediate particles, but $|M_{12}|$ constrained by exp.
3. Γ_{12} dominated by on-shell charm intermediate states
 \Rightarrow Believed not to change dramatically by New Physics contributions
Physical Constraints

- Mass and width of physical states have to be positive
- Unitarity has to be conserved
- Time evolution of any linear combination of $|B^0\rangle$ and $|\bar{B}^0\rangle$ determined entirely by the Γ matrix
 \[\Rightarrow \Gamma \text{ itself has positive eigenvalues} \]
- Defining $\Gamma = (\Gamma_H + \Gamma_L)/2$, $x = (m_H - m_L)/\Gamma$ and $y = (\Gamma_L - \Gamma_H)/(2\Gamma)$
 \[\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2} \]
- Known as unitarity bound or Bell-Steinberger inequality

Generic Conditions on Mixing Parameter

Physical Constraints

- Mass and width of physical states have to be positive
- Unitarity has to be conserved
- Time evolution of any linear combination of $|B^0\rangle$ and $|\bar{B}^0\rangle$ determined entirely by the Γ matrix

\Rightarrow Γ itself has positive eigenvalues

- Defining $\Gamma = (\Gamma_H + \Gamma_L)/2$, $x = (m_H - m_L)/\Gamma$ and $y = (\Gamma_L - \Gamma_H)/(2\Gamma)$

$$\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2}$$

- Known as unitarity bound or Bell-Steinberger inequality

\[J.S. \ Bell, \ J. \ Steinberger, \ “Weak \ interactions \ of \ kaons”, \ in \ R. \ G. \ Moorhouse \ et \ al., \ Eds., \ Proceedings \ of \ the \ Oxford \ Int. \ Conf. \ on \ Elementary \ Particles, \ Rutherford \ Laboratory, \ Chilton, \ England, \ 1965, \ p. \ 195.\]
Generic Conditions on Mixing Parameter

Physical Constraints

- Mass and width of physical states have to be positive
- Unitarity has to be conserved
- Time evolution of any linear combination of $|B^0\rangle$ and $|\bar{B}^0\rangle$ determined entirely by the Γ matrix
 \[\Rightarrow \Gamma \text{ itself has positive eigenvalues} \]
- Defining $\Gamma = (\Gamma_H + \Gamma_L)/2$, $x = (m_H - m_L)/\Gamma$ and $y = (\Gamma_L - \Gamma_H)/(2\Gamma)$
 \[\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2} \]

- Known as unitarity bound or Bell-Steinberger inequality
Reminder: Sketching Derivation of Unitarity Bound

Definitions

1. \(a_i = \sqrt{2\pi \rho_i} \langle f_i | H | B \rangle \), \(\bar{a}_i = \sqrt{2\pi \rho_i} \langle f_i | H | \bar{B} \rangle \)

\[\Rightarrow a_i^* a_i = \Gamma_{11}, \quad \bar{a}_i^* \bar{a}_i = \Gamma_{22}, \quad \bar{a}_i^* a_i = \Gamma_{12} \]

2. In the physical basis we have

\[a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \quad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi}) \]

\[\Rightarrow a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* a_{Li} = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma) \delta \]

Sketch of Derivation

1. Apply optical theorem and Cauchy Schwartz inequality

\[\Rightarrow \text{Forces } \Gamma \text{ to have positive semi-definit eigenvalues} \]

\[\Gamma_{11} \geq |\Gamma_{12}| \]

2. Apply the same to the physical basis with unitarity condition

3. Leads to the unitarity bound \(\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2 / 4} = \frac{1 - y^2}{1 + x^2} \)
Definition:

\[a_i = \sqrt{2\pi\rho_i} \langle f_i|\mathcal{H}|B \rangle, \quad \bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i|\mathcal{H}|B \rangle \]

\[\Rightarrow a_i^* a_i = \Gamma_{11}, \quad \bar{a}_i^* \bar{a}_i = \Gamma_{22}, \quad \bar{a}_i^* a_i = \Gamma_{12} \]

In the physical basis we have:

\[a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \quad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi}) \]

\[\Rightarrow a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* a_{Li} = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma) \delta \]

Sketch of Derivation:

- Apply optical theorem and Cauchy Schwartz inequality
- Forces \(\Gamma \) to have positive semi-definit eigenvalues

\[\Gamma_{11} \geq |\Gamma_{12}| \]

- Apply the same to the physical basis with unitarity condition
- Leads to the unitarity bound

\[\delta^2 < \frac{\Gamma_H\Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2} \]
Introduction

Theoretical Constraints on the Mixing Parameters

Summary

Unitarity Constraint

Deriving a Relation using Theoretical Input

Application to Recent Data

Reminder: Sketching Derivation of Unitarity Bound

Definitions

- \(a_i = \sqrt{2\pi \rho_i} \langle f_i | \mathcal{H} | B \rangle, \quad \bar{a}_i = \sqrt{2\pi \rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle \)

\(\Rightarrow \quad a_i^* a_i = \Gamma_{11}, \quad \bar{a}_i^* \bar{a}_i = \Gamma_{22}, \quad \bar{a}_i^* a_i = \Gamma_{12} \)

- In the physical basis we have
 \(a_i = \frac{1}{2p} (a_{Hi} + a_{Li}), \quad \bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi}) \)

\(\Rightarrow \quad a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* a_{Li} = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma) \delta \)

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality

\(\Rightarrow \quad \text{Forces } \Gamma \text{ to have positive semi-definit eigenvalues} \)

\[\Gamma_{11} \geq |\Gamma_{12}| \]

- Apply the same to the physical basis with unitarity condition

- Leads to the unitarity bound \(\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2} \)
Reminder: Sketching Derivation of Unitarity Bound

Definitions

- \(a_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | B \rangle \), \(\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i | \mathcal{H} | \bar{B} \rangle \)
- \(a^*_i a_i = \Gamma_{11} \), \(\bar{a}^*_i \bar{a}_i = \Gamma_{22} \), \(\bar{a}^*_i a_i = \Gamma_{12} \)

- In the physical basis we have
 - \(a_i = \frac{1}{2p} (a_{Hi} + a_{Li}) \), \(\bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi}) \)
 - \(a^*_{Hi} a_{Hi} = \Gamma_H \), \(a^*_{Li} a_{Li} = \Gamma_L \), \(a^*_{Hi} a_{Li} = -i(m_H - m_L + i\Gamma)\delta \)

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality
 - Forces \(\Gamma \) to have positive semi-definit eigenvalues
 - \(\Gamma_{11} \geq |\Gamma_{12}| \)
- Apply the same to the physical basis with unitarity condition
 - Leads to the unitarity bound \(\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2} \)
Reminder: Sketching Derivation of Unitarity Bound

Definitions

- \(a_i = \sqrt{2\pi\rho_i} \langle f_i|\mathcal{H}|B \rangle \), \(\bar{a}_i = \sqrt{2\pi\rho_i} \langle f_i|\mathcal{H}|\bar{B} \rangle \)
- \(a_i^* a_i = \Gamma_{11}, \quad \bar{a}_i^* \bar{a}_i = \Gamma_{22}, \quad \bar{a}_i^* a_i = \Gamma_{12} \)
- In the physical basis we have
 \(a_i = \frac{1}{2p} (a_{Hi} + a_{Li}) \), \(\bar{a}_i = \frac{1}{2q} (a_{Li} - a_{Hi}) \)
- \(a_{Hi}^* a_{Hi} = \Gamma_H, \quad a_{Li}^* a_{Li} = \Gamma_L, \quad a_{Hi}^* a_{Li} = -i(m_H - m_L + i\Gamma)\delta \)

Sketch of Derivation

- Apply optical theorem and Cauchy Schwartz inequality
- Forces \(\Gamma \) to have positive semi-definit eigenvalues
 \(\Gamma_{11} \geq |\Gamma_{12}| \)
- Apply the same to the physical basis with unitarity condition
- Leads to the unitarity bound \(\delta^2 < \frac{\Gamma_H \Gamma_L}{(m_H - m_L)^2 + (\Gamma_H + \Gamma_L)^2/4} = \frac{1 - y^2}{1 + x^2} \)
Implication for the Three Neutral Mesons

Neutral K Mesons
- Very limited amount of final states
- Unitarity bound developed for this case

Neutral D Mesons
- Difficult in theory as well as in experiment
 1. Non-perturbative methods?
 2. Huge GIM suppression
- Interesting because of only up-type

Neutral $B_{d,s}$ Mesons
- Lots of possible final states
- Experimental precision is increasing
- Systematic expansion for theoretical calculations possible
 \implies Good opportunity to search for New Physics
- Improve bound on parameters
Implication for the Three Neutral Mesons

Neutral K Mesons
- Very limited amount of final states
- Unitarity bound developed for this case

Neutral D Mesons
- Difficult in theory as well as in experiment
 1. Non-perturbative methods?
 2. Huge GIM suppression
- Interesting because of only up-type

Neutral $B_{d,s}$ Mesons
- Lots of possible final states
- Experimental precision is increasing
- Systematic expansion for theoretical calculations possible
 ⇒ Good opportunity to search for New Physics
 - Improve bound on parameters
Assumptions

- Assume knowledge of $|\Gamma_{12}|$
 - Can be computed in a reliable, systematical expansion in the B system
- Define $y_{12} \geq 0$ with

 \[
 0 \leq y_{12} = \frac{|\Gamma_{12}|}{\Gamma} \leq 1
 \]

Goals

- Use precise measurement of mass difference
- Use a reliable theory prediction
 - Obtain a relation between two measurable quantities
Assumptions

- Assume knowledge of $|\Gamma_{12}|$
- Can be computed in a reliable, systematical expansion in the B system
- Define $y_{12} \geq 0$ with
 \[
 0 \leq y_{12} = \frac{|\Gamma_{12}|}{\Gamma} \leq 1
 \]

Goals

- Use precise measurement of mass difference
- Use a reliable theory prediction
- Obtain a relation between two measurable quantities
Improvement: Using Theoretical Input

Assumptions
- Assume knowledge of $|\Gamma_{12}|$
 - Can be computed in a reliable, systematical expansion in the B system
- Define $y_{12} \geq 0$ with

 \[0 \leq y_{12} = \frac{|\Gamma_{12}|}{\Gamma} \leq 1 \]

Goals
- Use precise measurement of mass difference
- Use a reliable theory prediction
 - Obtain a relation between two measurable quantities
Deriving the Relation

Sketch of the Steps

- Start with the same equations as for the unitarity bound
- Use y_{12} instead of unitarity constraint
- Proceed with same steps

The Result

$$\delta^2 = \frac{y_{12}^2 - y^2}{y_{12}^2 + x^2} = \frac{|\Gamma_{12}|^2 - (\Delta \Gamma)^2/4}{|\Gamma_{12}|^2 + (\Delta m)^2}$$

- Entirely determined by solving the eigenstate problem
- Relation is exact
- Monotonic function in y_{12}
- In view of uncertainties, should be seen as an upper bound
Deriving the Relation

Sketch of the Steps

- Start with the same equations as for the unitarity bound
- Use y_{12} instead of unitarity constraint
- Proceed with same steps

The Result

$$\delta^2 = \frac{y_{12}^2 - y^2}{y_{12}^2 + x^2} = \frac{|\Gamma_{12}|^2 - (\Delta \Gamma)^2/4}{|\Gamma_{12}|^2 + (\Delta m)^2}$$

- Entirely determined by solving the eigenstate problem
- Relation is exact
- Monotonic function in y_{12}
- In view of uncertainties, should be seen as an upper bound
Deriving the Relation

Sketch of the Steps

- Start with the same equations as for the unitarity bound
- Use y_{12} instead of unitarity constraint
- Proceed with same steps

The Result

$$\delta^2 = \frac{y_{12}^2 - y^2}{y_{12}^2 + x^2} = \frac{|\Gamma_{12}|^2 - (\Delta \Gamma)^2/4}{|\Gamma_{12}|^2 + (\Delta m)^2}$$

- Entirely determined by solving the eigenstate problem
- Relation is exact
- Monotonic function in y_{12}
- In view of uncertainties, should be seen as an upper bound
Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
 - δ depends only on mixing parameters and independent of Γ
 - Scale Γ by y_{12}
 1. Does not affect δ
 2. Changes $x \rightarrow x/y_{12}$ and $y \rightarrow y/y_{12}$

\Rightarrow Combining argument with unitarity bound recovers exact relation

Derivation not Assuming CPT invariance

- Assuming no CPT invariance implies $M_{11} \neq M_{22}$ and $\Gamma_{11} \neq \Gamma_{22}$
- Mixing parameters depend on difference of diagonal components

\Rightarrow Relation applies for $|\delta|^2$

- Usual derivation do not go through if CPT is violated
Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- \(\delta \) depends only on mixing parameters and independent of \(\Gamma \)
 - Scale \(\Gamma \) by \(y_{12} \)
 - Does not affect \(\delta \)
 - Changes \(x \rightarrow x/y_{12} \) and \(y \rightarrow y/y_{12} \)
 \(\Rightarrow \) Combining argument with unitarity bound recovers exact relation

Derivation not Assuming CPT invariance

- Assuming no CPT invariance implies \(M_{11} \neq M_{22} \) and \(\Gamma_{11} \neq \Gamma_{22} \)
- Mixing parameters depend on difference of diagonal components
 \(\Rightarrow \) Relation applies for \(|\delta|^2 \)
- Usual derivation do not go through if CPT is violated
Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- \(\delta \) depends only on mixing parameters and independent of \(\Gamma \)
- Scale \(\Gamma \) by \(y_{12} \)
 1. Does not affect \(\delta \)
 2. Changes \(x \rightarrow x/y_{12} \) and \(y \rightarrow y/y_{12} \)

\(\Rightarrow \) Combining argument with unitarity bound recovers exact relation

Derivation not Assuming CPT invariance

- Assuming no CPT invariance implies \(M_{11} \neq M_{22} \) and \(\Gamma_{11} \neq \Gamma_{22} \)
- Mixing parameters depend on difference of diagonal components

\(\Rightarrow \) Relation applies for \(|\delta|^2 \)

- Usual derivation do not go through if CPT is violated
Scaling Argument and CPT

Obtain a Physical Understanding

- Relation can also be obtained from a scaling argument
- \(\delta \) depends only on mixing parameters and independent of \(\Gamma \)
- Scale \(\Gamma \) by \(y_{12} \)
 1. Does not affect \(\delta \)
 2. Changes \(x \rightarrow x/y_{12} \) and \(y \rightarrow y/y_{12} \)

\[\Rightarrow \] Combining argument with unitarity bound recovers exact relation

Derivation not Assuming CPT invariance

- Assuming no CPT invariance implies \(M_{11} \neq M_{22} \) and \(\Gamma_{11} \neq \Gamma_{22} \)
- Mixing parameters depend on difference of diagonal components

\[\Rightarrow \] Relation applies for \(|\delta|^2 \)
- Usual derivation do not go through if CPT is violated
Combined Bound on A_{SL}^b

Experimental Situation
- Hadron colliders produce admixture of B_s and B_d
- Production asymmetry is known at DØ
 \[A_{\text{SL}}^b = (0.594 \pm 0.022) A_{\text{SL}}^d + (0.406 \pm 0.022) A_{\text{SL}}^s \]
- B factories can access B_d ⇒ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input
- Relation (bound) on $|\delta|$
- Relation for individual $|A_{\text{SL}}^{d,s}|$
- With know production asymmetry we can give a bound on
 \[|A_{\text{SL}}^b| \leq (1.188 \pm 0.044) \delta_{\text{max}}^d + (0.812 \pm 0.044) \delta_{\text{max}}^s \]
- Bound is the same, if difference is measured
Combined Bound on A^b_{SL}

Experimental Situation

- Hadron colliders produce admixture of B_s and B_d
 - Production asymmetry is known at DØ
 \[A^b_{SL} = (0.594 \pm 0.022) A^d_{SL} + (0.406 \pm 0.022) A^s_{SL} \]
- B factories can access $B_d \Rightarrow$ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input

- Relation (bound) on $|\delta|$:
 - Relation for individual $|A^{d,s}_{SL}|$
 - With know production asymmetry we can give a bound on
 \[|A^b_{SL}| \leq (1.188 \pm 0.044) \delta^d_{max} + (0.812 \pm 0.044) \delta^s_{max} \]
- Bound is the same, if difference is measured
Combined Bound on A_{SL}^{b}

Experimental Situation
- Hadron colliders produce admixture of B_s and B_d
- Production asymmetry is known at DØ
 \[A_{SL}^{b} = (0.594 \pm 0.022) A_{SL}^{d} + (0.406 \pm 0.022) A_{SL}^{s} \]
- B factories can access B_d ⇒ need Super-B for sufficient precision

Implication for Unitarity Relation with Theory Input
- Relation (bound) on $|\delta|$
- Relation for individual $|A_{SL}^{d,s}|$
- With known production asymmetry we can give a bound on
 \[|A_{SL}^{b}| \leq (1.188 \pm 0.044) \delta_{max}^{d} + (0.812 \pm 0.044) \delta_{max}^{s} \]
- Bound is the same, if difference is measured
Plot of the Bound

- Assuming $\Delta \Gamma_d = 0$
- Horizontal lines: 1σ range of $|A_{SL}^b|$
 - DØ measurement
- Vertical lines correspond to $\Delta \Gamma_s$
 - LHCb measurement

- Shaded regions are allowed by theory prediction
 - Darker uses 1σ upper range
 - Lighter uses 2σ upper range
- Dashed [dotted] curves: Mixed sigma interval of theory predictions
- The vertical boundaries of the shaded regions arise because $|\Delta \Gamma_s| > 2|\Gamma_{12}^s|$ is unphysical.
Assuming $\Delta \Gamma_d = 0$

Horizontal lines: 1σ range of $|A_{SL}^b|$
DØ measurement

Vertical lines correspond to $\Delta \Gamma_s$
LHCb measurement

- Shaded regions are allowed by theory prediction
 1. Darker uses 1σ upper range
 2. Lighter uses 2σ upper range

- Dashed [dotted] curves: Mixed sigma interval of theory predictions

 The vertical boundaries of the shaded regions arise because
 $|\Delta \Gamma_s| > 2|\Gamma_{12}^s|$ is unphysical.
Plot of the Bound

- Assuming $\Delta \Gamma_d = 0$
- Horizontal lines: 1σ range of $|A_{SL}^b|$
 DØ measurement
- Vertical lines correspond to $\Delta \Gamma_s$
 LHCb measurement

- Shaded regions are allowed by theory prediction
 1. Darker uses 1σ upper range
 2. Lighter uses 2σ upper range

- Dashed [dotted] curves: Mixed sigma interval of theory predictions

- The vertical boundaries of the shaded regions arise because $|\Delta \Gamma_s| > 2 |\Gamma_{12}^s|$ is unphysical.
Plot on Individual Bound on B_s

Interpretation
- Horizontal lines correspond to LHCb measurement
- Dark [light] shaded allowed by 1σ [2σ] theory variation
- No discrepancy claimed in experiment
Plot on Individual Bound on B_d

Interpretation

- Dark [light] shaded allowed by 1σ [2σ] theory variation
- No discrepancy claimed in experiment
- Non-zero measurement of $\Delta \Gamma_d$ would strengthen upper bound
Introduction

Theoretical Constraints on the Mixing Parameters

Summary

Unitarity Constraint

Deriving a Relation using Theoretical Input

Application to Recent Data

Plot on Individual Bound on B_d

Interpretation

- Dark [light] shaded allowed by 1σ [2σ] theory variation
- No discrepancy claimed in experiment
- Non-zero measurement of $\Delta \Gamma_d$ would strengthen upper bound
Numerical Interpretation

Remarks

- Problematic: $|\Delta \Gamma_s|^{\text{meas.}} > 2 |\Gamma_{12}^s|$ is unphysical
- Numerator of Relation can vanish \Rightarrow Upper bound
- Assume 2σ theory prediction for a conservative estimate

Results

- For B_s system, we obtain by propagating the uncertainties, taking into account the unphysical region
 $|A_{SL}^s| < 4.2 \times 10^{-3}$
- 2-3 times better than best current experimental bound
- For the B_d system we obtain a comparable bound
 $|A_{SL}^d| < 7.4 \times 10^{-3}$
- Significant improvement possible by observing $|\Delta \Gamma_d| > 0$
Numerical Interpretation

Remarks
- Problematic: $|\Delta \Gamma_s|^{\text{meas.}} > 2|\Gamma_{12}^s|$ is unphysical
- Numerator of Relation can vanish ⇒ Upper bound
- Assume 2σ theory prediction for a conservative estimate

Results
- For B_s system, we obtain by propagating the uncertainties, taking into account the unphysical region
 $$|A_{sL}^s| < 4.2 \times 10^{-3}$$
- 2-3 times better than best current experimental bound
- For the B_d system we obtain a comparable bound
 $$|A_{sL}^d| < 7.4 \times 10^{-3}$$
- Significant improvement possible by observing $|\Delta \Gamma_d| > 0$
Numerical Interpretation

Remarks
- Problematic: $|\Delta \Gamma_s|^{\text{meas.}} > 2|\Gamma_{12}^s|$ is unphysical
- Numerator of Relation can vanish \Rightarrow Upper bound
- Assume 2σ theory prediction for a conservative estimate

Results
- For B_s system, we obtain by propagating the uncertainties, taking into account the unphysical region
 $$|A_{\text{SL}}^s| < 4.2 \times 10^{-3}$$
- 2-3 times better than best current experimental bound
- For the B_d system we obtain a comparable bound
 $$|A_{\text{SL}}^d| < 7.4 \times 10^{-3}$$
- Significant improvement possible by observing $|\Delta \Gamma_d| > 0$
Discussion of the Results

Strength of the Bound

- Upper bound on y_{12} implies an upper bound on $|\delta|$.
- Relation is much stronger for small y_{12}, as e.g. in the B_d system.

Comparing to Known Results

- DØ A_{SL} measurement: 3.9σ discrepancy with SM
 - Correlated with the discrepancy found in our analysis
 1. SM prediction of A_{SL} uses calculation of $|\Gamma_{12}|$
 2. The relation uses $|\Gamma_{12}|$ as an input
 3. Calculation of $|\Gamma_{12}|$ and $\text{Im}(\Gamma_{12})$ rely on the same OPE
- Large cancellations in $\text{Im}(\Gamma_{12})$ ⇒ Uncertainties could be larger than expected from NLO calculation [hep-ph/0308029, hep-ph/0307344]
- The sensitivity of Γ_{12} to NP is generally weak
- Interesting to determine δ additionally from this relation.
Discussion of the Results

Strength of the Bound

- Upper bound on γ_{12} implies an upper bound on $|\delta|$.
- Relation is much stronger for small γ_{12}, as e.g. in the B_d system.

Comparing to Known Results

- DØ A_{SL} measurement: 3.9σ discrepancy with SM.
 - Correlated with the discrepancy found in our analysis.
 1. SM prediction of A_{SL} uses calculation of Γ_{12}.
 2. The relation uses $|\Gamma_{12}|$ as an input.
 3. Calculation of $|\Gamma_{12}|$ and $\text{Im}(\Gamma_{12})$ rely on the same OPE.
- Large cancellations in $\text{Im}(\Gamma_{12})$ ⇒ Uncertainties could be larger than expected from NLO calculation [hep-ph/0308029, hep-ph/0307344].
- The sensitivity of Γ_{12} to NP is generally weak.
- Interesting to determine δ additionally from this relation.
Discussion of the Results

Strength of the Bound

- Upper bound on y_{12} implies an upper bound on $|\delta|$.
- Relation is much stronger for small y_{12}, as e.g. in the B_d system.

Comparing to Known Results

- DØ A_{SL} measurement: 3.9σ discrepancy with SM
 - Correlated with the discrepancy found in our analysis
 - SM prediction of A_{SL} uses calculation of Γ_{12}
 - The relation uses $|\Gamma_{12}|$ as an input
 - Calculation of $|\Gamma_{12}|$ and $\text{Im}(\Gamma_{12})$ rely on the same OPE
 - Large cancellations in $\text{Im}(\Gamma_{12})$ ⇒ Uncertainties could be larger than expected from NLO calculation [hep-ph/0308029, hep-ph/0307344]
 - The sensitivity of Γ_{12} to NP is generally weak
 - Interesting to determine δ additionally from this relation
No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

- Unitarity bound is saturated if
 \[\langle f|T|B_H \rangle \propto \langle f|T|B_L \rangle \]
- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
 \[\Rightarrow \text{Orthogonal, non CP violating system as starting point} \]
- Arbitrary new UV physics can change \(M_{12} \) independently of \(\Gamma_{12} \)
- Varying \(M_{12} \) keeping mass and width of states physical
 \[\Rightarrow \text{Unitarity bound can be saturated (relax constraint Arg } M_{12} = \text{Arg } \Gamma_{12} \) \]
- Explicit mathematical check
No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

- Unitarity bound is saturated if
 \[\langle f|T|B_H \rangle \propto \langle f|T|B_L \rangle \]

- Start with an arbitrary, generic decaying two-state system

- Wigner-Weisskopf approximation: Any choice of parameters OK
 ⇒ Orthogonal, non CP violating system as starting point

- Arbitrary new UV physics can change \(M_{12} \) independently of \(\Gamma_{12} \)

- Varying \(M_{12} \) keeping mass and width of states physical
 ⇒ Unitarity bound can be saturated (relax constraint \(\text{Arg } M_{12} = \text{Arg } \Gamma_{12} \))

- Explicit mathematical check
The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

- Unitarity bound is saturated if
 \[\langle f | T | B_H \rangle \propto \langle f | T | B_L \rangle \]
- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
 ⇒ Orthogonal, non CP violating system as starting point
 - Arbitrary new UV physics can change \(M_{12} \) independently of \(\Gamma_{12} \)
 - Varying \(M_{12} \) keeping mass and width of states physical
 ⇒ Unitarity bound can be saturated (relax constraint \(\text{Arg} \ M_{12} = \text{Arg} \ \Gamma_{12} \))
- Explicit mathematical check
No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

- Unitarity bound is saturated if
 \[\langle f|T|B_H \rangle \propto \langle f|T|B_L \rangle \]
- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
 \[\Rightarrow \text{Orthogonal, non CP violating system as starting point} \]
- Arbitrary new UV physics can change \(M_{12} \) independently of \(\Gamma_{12} \)
- Varying \(M_{12} \) keeping mass and width of states physical
 \[\Rightarrow \text{Unitarity bound can be saturated} \text{ (relax constraint Arg } M_{12} = \text{Arg } \Gamma_{12} \) \]
- Explicit mathematical check
No Go Theorem (preliminary)

The Claim

There is no generic bound, stronger than the unitarity bound

Sketch of Derivation

- Unitarity bound is saturated if
 \[\langle f | T | B_H \rangle \propto \langle f | T | B_L \rangle \]
- Start with an arbitrary, generic decaying two-state system
- Wigner-Weisskopf approximation: Any choice of parameters OK
 \[\Rightarrow \text{Orthogonal, non CP violating system as starting point} \]
 - Arbitrary new UV physics can change \(M_{12} \) independently of \(\Gamma_{12} \)
 - Varying \(M_{12} \) keeping mass and width of states physical
 \[\Rightarrow \text{Unitarity bound can be saturated (relax constraint Arg } M_{12} = \text{Arg } \Gamma_{12}) \]
 - Explicit mathematical check
Summary

- Provided a physical derivation of the exact relation allowing for theoretical input on $|\Gamma_{12}|$
 1. Input is typically insensitive to New Physics
 2. Avoids largest uncertainties of theory calculation
 3. Valid even if CPT is violated

- Independent of the discrepancy found from a global fit
 1. Application to $B_{d,s}$ systems leads to the individual bounds

 $$|A_{SL}^s| < 4.2 \times 10^{-3} \quad |A_{SL}^d| < 7.4 \times 10^{-3}$$

 2. Providing a bound on the individual asymmetries at comparable or better levels than the current experimental bounds

 3. Bounds are in tension with the DØ measurement of A_{SL}^b

- Once an unambiguous determination of A_{SL} or $\Delta \Gamma$ is made, we can use it to constrain the other observable.
Backup Slides
Direct CP Violation

General Comment

- Need CP even and odd phases
 \[\Gamma \propto |A_1(f) + A_2(f)|^2 \]
- Interference of CP conserving (strong) and violating (weak) phases
- Occurs in neutral and charged meson decays
- Necessary condition: \(|A(f)| \neq |\bar{A}(\bar{f})| \)

Example of Process

Only source of CP violation in charged meson decays

\[A_{f^\pm} \equiv \frac{\Gamma(P^- \to f^-) - \Gamma(P^+ \to f^+)}{\Gamma(P^- \to f^-) + \Gamma(P^+ \to f^+)} = \frac{|\bar{A}(f^-)/A(f^+)|^2 - 1}{|\bar{A}(f^-)/A(f^+)|^2 + 1} \]
CP Violation in Interference of Mixing and Decay

General Comments [Bigi, Sanda: CP violation]

- Interference between decay and mixing to common final state
- Necessary condition:

$$\text{Im} \left[\frac{q}{p} \frac{\ddot{A}(f)}{A(f)} \right] \neq 0$$

Example of Process

- CP Asymmetry (easy form only in limits, e.g. B mesons)

$$A_{f_{CP}}(t) \equiv \frac{\Gamma(\bar{P}_0 \rightarrow f_{CP}) - \Gamma(P_0 \rightarrow f_{CP})}{\Gamma(\bar{P}_0 \rightarrow f_{CP}) + \Gamma(P_0 \rightarrow f_{CP})}$$

$$= -A_{CP}^{\text{dir}} \cos(\Delta M t) - A_{CP}^{\text{mix}} \sin(\Delta M t)$$

$$= \frac{\text{cosh}(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}{\text{cosh}(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$$

- $B_s \rightarrow J/\Psi \phi$ and $B_s \rightarrow J/\Psi f_0$