On the Higgs triplet extension of the Standard Model

V. Jauker
(University of Vienna)

4th of October 2012, Vienna
Outline

• Introduction
• The Higgs triplet model
• Neutrino mass terms
• Cross sections
• Decay widths
• Conclusions
Introduction
• The Standard Model of particle physics (SM) has to be extended due to unsolved problems like
 • Quantum gravity
 • baryon asymmetry
 • dark matter
 • hierarchy problem
 • strong CP-problem
 • neutrino masses
 • etc.
Introduction: Extension of the SM

• How can the SM be extended?
Introduction: Extension of the SM

- How can the SM be extended?
- Fundamental extensions:
 - Introduction of a larger gauge group than $\text{SU}(3)_c \times \text{SU}(2)_L \times \text{U}(1)_Y$ like in Grand Unifying Theories
 - Assumption of extra dimensions like in string theories
 - etc.
Introduction: Extension of the SM

• How can the SM be extended?
• Fundamental extensions:
 • Introduction of a larger gauge group than $SU(3)_C \times SU(2)_L \times U(1)_Y$ like in Grand Unifying Theories
 • Assumption of extra dimensions like in string theories
 • etc.
• Particular extensions:
 • Augmentation of a single sector of the SM like the scalar sector, etc.
Introduction: Extended scalar sector

- The scalar sector can be extended by introducing additional Higgs multiplets such as in
 - Two Higgs doublet models (SM + 2\(\phi\))
 - Zee model (SM + 2\(\phi\) + \(\eta^+\))
 - Zee-Babu model (SM + \(\eta^+\) + \(k^{++}\))
 - Higgs triplet model (SM + \(\Phi = (\phi^{++}, \phi^+, \phi^0)\))
 - etc.
Introduction: Extended scalar sector

• What is the motivation for extending the scalar sector?
Introduction: Extended scalar sector

- What is the motivation for extending the scalar sector?
- In the SM neutrinos stay massless due to the absence of right-handed neutrino fields
Introduction: Extended scalar sector

• What is the motivation for extending the scalar sector?
• In the SM neutrinos stay massless due to the absence of right-handed neutrino fields
• But recent experiments have discovered the phenomenon of neutrino flavour oscillations, which is only possible if neutrinos have non-zero and different masses
Introduction: Extended scalar sector

• What is the motivation for extending the scalar sector?
• In the SM neutrinos stay massless due to the absence of right-handed neutrino fields
• But recent experiments have discovered the phenomenon of neutrino flavour oscillations, which is only possible if neutrinos have non-zero and different masses
• One possibility to introduce neutrino masses is the so-called type-II see-saw mechanism, in which a complex scalar triplet with $Y = 2$, the Higgs triplet, is added to the scalar sector
Introduction: Extended scalar sector

- The Lagrangian of the Yukawa sector is enhanced with a gauge invariant coupling \mathcal{L}_Δ between the Higgs triplet and the lepton doublets.
- \mathcal{L}_Δ automatically leads to a Majorana Mass term for neutrinos at tree level proportional to v_T (the vacuum expectation value of the neutral component of the Higgs triplet).
The Higgs triplet model
The Higgs triplet model: The idea

- The idea of adding a scalar triplet to the SM was first mentioned in a work of W. Konetschny and W. Kummer in 1977 [1]

The Higgs triplet model: The idea

• The idea of adding a scalar triplet to the SM was first mentioned in a work of W. Konetschny and W. Kummer in 1977 [1]
• It was shown that additional scalar singlets S^+, S^{++} and a scalar triplet $\Phi = (\phi^{++}, \phi^+, \phi^0)$ permit Yukawa couplings, which allow lepton flavour violating transitions like $\mu \to e\gamma$ and $\mu \to 3e$

The Higgs triplet model: The idea

- The idea of adding a scalar triplet to the SM was first mentioned in a work of W. Konetschny and W. Kummer in 1977 [1]
- It was shown that additional scalar singlets S^+, S^{++} and a scalar triplet $\Phi = (\phi^{++}, \phi^+, \phi^0)$ permit Yukawa couplings, which allow lepton flavour violating transitions like $\mu \to e \gamma$ and $\mu \to 3e$
- This idea of an additional a scalar triplet was also used by G.B Gelmini and M. Roncadelli in 1981 in order to introduce neutrino masses [2]

The Yukawa Lagrangian in the lepton sector is given by [3]

\[\mathcal{L}_Y = \sum_{\alpha,\beta} \left\{ -c_{\alpha\beta} \bar{\ell}_{\alpha R} \phi^\dagger L_{\beta L} + \frac{1}{2} f_{\alpha\beta} L^T_{\alpha L} C^{-1} i\tau_2 \Delta L_{\beta L} \right\} + \text{H.c.} \]

- \(\alpha, \beta \) : flavour indices
- \(L_{\alpha L} = (\nu_{\alpha}, \ell_{\alpha L}) \) : left-handed lepton doublets
- \(\ell_{\alpha R} \) : right-handed lepton singlets
- \(\phi \) : Higgs doublet
- \(\Delta \) : 2\times2 representation of the Higgs triplet
- \(C \) : charge conjugation matrix
- \(\tau_2 \) : second pauli matrix
- \(c_{\alpha\beta}, f_{\alpha\beta} \) : coupling matrices, \(f \) symmetric, i.e. \(f_{\alpha\beta} = f_{\beta\alpha} \)

The Higgs triplet model: The multiplets

- The multiplets transform under $U \in SU(2)$ as

\[
L_{\alpha L} \rightarrow UL_{\alpha L}, \quad \ell_{\alpha R} \rightarrow \ell_{\alpha R}, \quad \phi \rightarrow U\phi, \quad \Delta \rightarrow U\Delta U^+ \]
The Higgs triplet model: The multiplets

- The multiplets transform under $U \in SU(2)$ as
 $$L_{\alpha L} \rightarrow UL_{\alpha L}, \; \ell_{\alpha R} \rightarrow \ell_{\alpha R}, \; \phi \rightarrow U\phi, \; \Delta \rightarrow U\Delta U^†$$

- The $U(1)$ transformation properties are determined by their hypercharges:

<table>
<thead>
<tr>
<th></th>
<th>$L_{\alpha L}$</th>
<th>$\ell_{\alpha R}$</th>
<th>ϕ</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
The Higgs triplet model: The 2×2 representation

- The relation between the triplet and the 2×2 representation is given by

$$\Delta = \Phi \cdot \vec{\tau} = \begin{pmatrix} H^+ & \sqrt{2}H^{++} \\ \sqrt{2}H^0 & -H^+ \end{pmatrix} \text{ with } \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}(H^0 + H^{++}) \\ \frac{1}{\sqrt{2}}(H^0 - H^{++}) \\ H^+ \end{pmatrix}$$
The Higgs triplet model: The 2×2 representation

- The relation between the triplet and the 2×2 representation is given by

$$
\Delta = \Phi \cdot \vec{\tau} = \begin{pmatrix}
H^+ & \sqrt{2}H^{++} \\
\sqrt{2}H^0 & -H^+
\end{pmatrix}
\text{ with } \Phi = \begin{pmatrix}
\frac{1}{\sqrt{2}}(H^0 + H^{++}) \\
\frac{1}{\sqrt{2}}(H^0 - H^{++}) \\
H^+
\end{pmatrix}
$$

- The charge eigenfields are given by

$$
H^{++} = \frac{1}{\sqrt{2}}(H_1 - iH_2), \quad H^+ = H_3, \quad H^0 = \frac{1}{\sqrt{2}}(H_1 + iH_2)
$$
The Higgs triplet model: VEVs

• The VEVs of the Higgs multiplets consistent with electric charge conservation are given by

\[
\langle \phi \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu \end{pmatrix} \quad \text{and} \quad \langle \Delta \rangle_0 = \begin{pmatrix} 0 & 0 \\ \nu_T & 0 \end{pmatrix}
\]
The Higgs triplet model: VEVs

- The VEVs of the Higgs multiplets consistent with electric charge conservation are given by
 \[\langle \phi \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu \end{pmatrix} \quad \text{and} \quad \langle \Delta \rangle_0 = \begin{pmatrix} 0 \\ \nu_T \\ 0 \end{pmatrix} \]

- We have set \(\langle H^0 \rangle_0 = \frac{\nu_T}{\sqrt{2}} \)

- We expect \(|\nu_T| \ll \nu \), since a larger triplet VEV would destroy the tree-level relation \(M_W = M_Z \cos(\theta_W) \) between the gauge boson masses and the Weinberg angle and precision measurements place a stringent bound on \(\nu_T \)[4]

The Higgs triplet model: The potential

- The most general Higgs potential involving ϕ and Δ is given by

$$V(\phi, \Delta) = a\phi^\dagger \phi + \frac{b}{2} \text{Tr} (\Delta \Delta^\dagger) + c(\phi^\dagger \phi)^2 + \frac{d}{4} (\text{Tr}(\Delta \Delta^\dagger))^2$$

$$+ \frac{e-h}{2} \phi^\dagger \phi \text{Tr}(\Delta \Delta^\dagger) + \frac{f}{4} \text{Tr}(\Delta^\dagger \Delta^\dagger) \text{Tr}(\Delta \Delta)$$

$$+ h\phi^\dagger \Delta^\dagger \Delta \phi + (t\phi^\dagger \Delta \tilde{\phi} + \text{H.c.})$$

with $\tilde{\phi} = i\tau_2 \phi^*$
• Under the assumption of lepton number conservation one has to assign lepton number -2 to the Higgs triplet and 0 to the Higgs doublet.
The Higgs triplet model: The potential

- Under the assumption of lepton number conservation one has to assign lepton number -2 to the Higgs triplet and 0 to the Higgs doublet.
- This lepton number is explicitly broken by the $t\phi^\dagger \Delta \bar{\phi} + \text{H.c.}$ term in the potential.
The Higgs triplet model: The potential

- Under the assumption of lepton number conservation one has to assign lepton number -2 to the Higgs triplet and 0 to the Higgs doublet.
- This lepton number is explicitly broken by the t-term ($t\phi^\dagger \Delta \tilde{\phi} + \text{H.c.}$) in the potential.
- All parameters of the potential are real, except t which is complex in general, i.e. $t = |t| e^{i\omega}$.
The Higgs triplet model: The potential

• Under the assumption of lepton number conservation one has to assign lepton number -2 to the Higgs triplet and 0 to the Higgs doublet

• This lepton number is explicitly broken by the t-term \((t\phi^\dagger \Delta \phi + \text{H.c.})\) in the potential

• All parameters of the potential are real, except \(t\) which is complex in general, i.e. \(t = |t|e^{i\omega}\)

• The doublet VEV \(v\) can be chosen real, by performing global U(1) transformation
The Higgs triplet model: The potential

- Under the assumption of lepton number conservation one has to assign lepton number -2 to the Higgs triplet and 0 to the Higgs doublet.
- This lepton number is explicitly broken by the t-term \((t\phi^\dagger\Delta\bar{\phi} + \text{H.c.})\) in the potential.
- All parameters of the potential are real, except \(t\) which is complex in general, i.e. \(t = |t|e^{i\omega}\).
- The doublet VEV \(\nu\) can be chosen real, by performing a global \(U(1)\) transformation.
- Because of the t-term we do not have a second global symmetry, the lepton number to make \(\nu_T\) real therefore we can write \(\nu_T = w e^{i\gamma}\) with \(w = |\nu_T|\).
The Higgs triplet model: The potential

- Following orders of magnitude for the parameters of the potential are assumed:

\[a, b \sim v^2; \ c, d, e, f, h \sim 1; \ |t| \ll v \]
The Higgs triplet model: The potential

- Following orders of magnitude for the parameters of the potential are assumed:

 \[a, b \sim v^2; \ c, d, e, f, h \sim 1; \ |t| \ll v \]

- The potential as function of the VEVs is given by

 \[
 V(\langle \phi \rangle_0, \langle \Delta \rangle_0) = \frac{1}{2} av^2 + \frac{1}{2} bw^2 + \frac{1}{4} cv^4 + \frac{1}{2} dw^4 \\
 + \frac{e-h}{4} v^2 w^2 + v^2 w |t| \cos(\omega + \gamma)
 \]

- It has to be minimized with respect to \(v, w \) and \(\gamma \) in order to obtain relations between parameters of the potential.
The Higgs triplet model: Minimum conditions

- Minimization with respect to γ, the phase of v_T, gives
 \[\omega + \gamma = \pi \] or
 \[v_T = -we^{-i\omega} \quad \text{and} \quad v_T t = -w|t| \]

- With this relation the other two minimum conditions are
 \[a + cv^2 + \frac{e - h}{2}w^2 + 2|t|w = 0 \]
 \[b + dw^2 + \frac{e-h}{2}v^2 + \frac{|t|}{w}v^2 = 0 \]

- We find the approximate solution
 \[v^2 \approx \frac{a^2}{c} \quad \text{and} \quad w \approx |t|\frac{v^2}{b + (e-h)v^2/2} \]
• We see that $w \sim |t|$, the triplet VEV is of the order of the parameter $|t|$ in the potential
• The fine-tuning to get a small triplet is therefore simply given by $|t| \ll v$
• Alternatively, one could use $b \gg v^2$ to get a small triplet VEV
The Higgs triplet model: Mass terms

- Mass terms for charged leptons and neutrinos are induced by \mathcal{L}_Y and the VEVs $\langle \phi \rangle_0, \langle \Delta \rangle_0$:

$$ - \left(\bar{\ell}_R \mathcal{M}_\ell \ell_L + \text{H.c.} \right) \quad \text{with} \quad \mathcal{M}_\ell = \frac{\nu}{\sqrt{2}} \left(c_{\alpha \beta} \right) $$

$$ \frac{1}{2} \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \text{H.c.} \quad \text{with} \quad \mathcal{M}_\nu = \nu_T \left(f_{\alpha \beta} \right) $$
Neutrino mass terms
Neutrino mass terms: Dirac vs. Majorana neutrinos

- Majorana Fermions are their own anti-particles
- The equation for Majorana field is the same as for Dirac fields:
 \[
 (i\gamma^\mu \partial_\mu - m)\psi = 0
 \]
- The Majorana nature is hidden in the Majorana condition:
 \[
 \psi = \psi^C = C\gamma_0^T \psi^*
 \]
- Most of the SM extensions suggest that neutrinos have Majorana Nature
- In consequence of the smallness of the neutrino masses, it is difficult to distinguish between Dirac and Majorana neutrinos
- Neutrinoless $\beta\beta$-decay to be the only prospective road so far
Neutrino mass terms: Dirac mass term

- With two independent chiral 4-spinor fields $\nu_{L,R}$ one can construct a Dirac mass term by writing a Lorentz-invariant bilinear for Dirac fields [5]:
 \[\bar{\nu}_R \mathcal{M} \nu_L + \text{H.c.} = \bar{\nu}' \hat{m} \nu' \]
- \mathcal{M} is an arbitrary $n \times n$ mass matrix
- \hat{m} is a diagonal and positive mass matrix with the bidiagonalization $U_R^\dagger \mathcal{M} U_L = \hat{m}$
- The physical Dirac fields are given by
 \[\nu' = \nu'_L + \nu'_R \text{ with } \nu_{L,R} = U_{L,R} \nu'_{L,R} \]

Neutrino mass terms: Majorana mass term

- With only one chiral 4-spinor field ν_L a *Lorentz-invariant* bilinear can still be constructed with the help of the charge conjugation matrix C. This bilinear is the so called Majorana mass term [5]:

$$\frac{1}{2} \nu_L^T C^{-1} \mathcal{M} \nu_L + \text{H.c.} = -\frac{1}{2} \bar{\nu}' \hat{m} \nu'$$

- \mathcal{M} is now a complex and symmetric $n \times n$ mass matrix
- \hat{m} is a diagonal and positive mass matrix with the diagonalization $U_L^T \mathcal{M} U_L = \hat{m}$
- The physical Majorana fields are given by

$$\nu' = \nu'_L + (\nu'_L)^C \text{ with } \nu_L = U_L \nu'_L$$

- The Majorana mass term violates not only the individual lepton family numbers just as the Dirac mass term, but it also violates the total lepton number $L = \sum_{\alpha} L_{\alpha}$

Neutrino mass terms: The mixing matrix U_{PMNS}

- Situation in the lepton sector analogue to the quark sector:
 Flavour eigenfields ≠ mass eigenfields
- Neutrino mixing given by
 $$\nu_{\alpha L} = \sum_j U_{\alpha j} \nu_{jL}$$
- The lepton mixing matrix U_{PMNS} (Pontecorvo-Maki-Nakagawa-Sakata-matrix) is given as
 $$U = U_{L}^{(\ell)^\dagger} U_{L}^{(\nu)}$$

where $U_{L}^{(\ell)^\dagger}$ and $U_{L}^{(\nu)}$ are the matrices which (bi)diagonalize the charged lepton/neutrino mass matrices.
Neutrino mass terms: The mixing matrix U_{PMNS}

- The lepton mixing matrix is usually parametrized as

$$U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & -s_{12} & 0 \\ -s_{12} & c_{23} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\times \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with $c_{ij} = \cos(\theta_{ij})$, $s_{ij} = \sin(\theta_{ij})$, δ is non-zero only if neutrino oscillations violate CP symmetry. α_1, α_2 are physically meaningful if neutrinos have Majorana nature.
Cross sections and decay widths
Cross sections and decay widths

- The Lagrangian \mathcal{L}_Y permits lepton flavour violating processes $\alpha^- \beta^- \rightarrow \gamma^- \delta^-$ (for $\alpha, \beta, \gamma, \delta = e, \mu, \tau$)
Cross sections and decay widths

- The cross section was calculated as [6]
 \[\sigma(\alpha^-\beta^- \to \gamma^-\delta^-) = \frac{|f_{\alpha\beta}|^2|f_{\gamma\delta}|^2}{16\pi(1 + \delta_{\gamma\delta})} \frac{s}{(s - m^2)^2 + m^2\Gamma^2} \]

- \(f \) Yukawa coupling matrix
- \(\delta_{\gamma\delta} \) Kronecker delta
- \(s = (p_1 + p_2)^2 \) Mandelstam variable
- \(m \) mass of \(H^-^- \)
- \(\Gamma \) total width of \(H^-^- \)

Cross sections and decay widths

- The gauge coupling

\[\mathcal{L}_{\Delta gauge} = \frac{1}{2} \text{Tr}\{(D_\mu \Delta)^\dagger (D^\mu \Delta)\} \]

permits lepton number violating processes like \(e^- e^- \rightarrow W^- W^- \)
Cross sections and decay widths

- The cross section was calculated as
 \[
 \sigma(e^-e^- \rightarrow W^-W^-) = \frac{G_F |f_{ee}|^2 |\nu_T|^2}{4\pi} \frac{(s - 2m_W^2)^2 + 8m_W^4}{(s - m)^2 + m^2\Gamma^2} \sqrt{1 - \frac{m_W^2}{m^2}}
 \]

- G_F Fermi constant
- f Yukawa coupling matrix
- ν_T triplet VEV
- m mass of H^{--}
- Γ total width of H^{--}
- m_W mass of the W-boson
Cross sections and decay widths

- Lets take a look at some decays of H^{--}
- $\Gamma(H^{--} \rightarrow \gamma^- \delta^-) = \frac{|f_{\gamma\delta}|^2}{4\pi(1+\delta_{\gamma\delta})} m$
- $\Gamma(H^{--} \rightarrow W^- W^-) = \frac{g^4|v_T|^2 (s-2m_w^2)^2+8m_w^4}{32\pi m} \frac{m_w^4}{m^2} \sqrt{1 - \frac{m_w^2}{m^2}}$
Cross sections and decay widths

\[\Gamma(H^{--} \to H^- W^-) = \frac{g^2}{16\pi m^3 m_w^2} \left[\lambda(m^2, m_-^2, m_W^2) \right]^3 \]

- \(m \) mass of \(H^{--} \)
- \(m_- \) mass of \(H^- \)
- \(m_W \) mass of the W-boson
- \(g \) coupling constant
- \(\lambda(x, y, z) = x^2 + y^2 + z^2 - 2(xy + xz + yz) \)
Cross sections and decay widths

- The 3-body decay $H^{-} \rightarrow H^{-} W^{-} Z^{0}$ has four contributions:
Cross sections and decay widths

- The squared amplitude $|\mathcal{M}|^2$ of this process consists of over a hundred terms.
- Most of the terms contain H^-, H^{--} or W^- propagators.
- The 3-body phase-space integral over the rational functions was not solvable analytically.
- Therefore $\Gamma(H^{--} \to H^- W^- Z^0)$ was solved numerically with the FORTRAN program RAMBOC, based on "RAMBO" (random momenta beautifully organized)[7].
- "RAMBO" is based on the Monte Carlo algorithm. The integration over phase space is replaced by a number of random choices over the integration variable.

Cross sections and decay widths
Cross sections and decay widths
Conclusions
Conclusions

• The additional term in the Yukawa Lagrangian \mathcal{L}_Y induced a lepton number violating Majorana mass term for neutrinos at tree level, which was found as $\frac{1}{2} \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \text{H.c.}$

• The mass matrix was given by $\mathcal{M}_\nu = \nu_T (f_{\alpha\beta})$

• The triplet VEV had to be very small, i.e. $|\nu_T| \ll \nu$, which was achieved by the fine-tuning $|t| \ll \nu$; t was the parameter of the lepton number violating term in the potential $(t \phi^\dagger \Delta \phi + \text{H.c.})$

• Neutrinos can be Dirac or Majorana fermions, most SM extension suggest Majorana nature of the neutrino

• \mathcal{L}_Y permits interesting lepton flavour and lepton number violating processes like $\alpha^- \beta^- \rightarrow \gamma^- \delta^-$, $e^- e^- \rightarrow W^- W^-$, $H^- \rightarrow H^- W^-$, $H^- \rightarrow H^- W^- Z^0$
Thank you for your attention!